
The

CSSToXSLFO

User Guide

Version 1.3.2
Werner Donné

Re
5th May 2006

© 2004-2006 Re. All rights granted.
This software is free and will remain free.
To use at your own responsibility.

table of contents

Introduction 11

In Practice 32

Specifying Style Sheets 32.1

Running It 32.2

Common Options 52.2.1
Options Specific To css2xslfo.jar 52.2.2
Options Specific To css2xep.jar 52.2.3
Options Specific To css2xsl.jar 52.2.4
Options Specific To css2fop.jar 62.2.5
Options Specific To css2fopnew.jar 62.2.6
Options Specific To css2xinc.jar 62.2.7
User Agent Parameters 62.2.8

Building CSSToXSLFO 72.3

Compliance With CSS2 93

Specifications 93.1

Properties 123.2

Extensions 194

Page Regions 194.1

Page Numbering 204.2

Page References 224.3

Leaders 224.4

Named Strings 234.5

Hyphenation 234.6

Footnotes 244.7

i

Orientation 254.8

List Style Types 254.9

Multicolumn 254.10

Change Bars 264.11

Links 264.12

Graphics 264.13

Column And Row Spanning 274.14

Proportional Column Widths 274.15

Repeating Table Headers And Footers 274.16

CSS3 Namespaces 274.17

Wrappers 284.18

Foreign Elements 284.19

Property Specifications 284.20

anchor 284.20.1
change-bar-class 294.20.2
change-bar-color 294.20.3
change-bar-offset 294.20.4
change-bar-placement 304.20.5
change-bar-style 304.20.6
change-bar-width 304.20.7
colspan 314.20.8
column-count 314.20.9
column-gap 314.20.10
column-span 324.20.11
content-height 324.20.12
content-type 324.20.13
content-width 334.20.14
display 334.20.15
force-page-count 344.20.16
hyphenate 344.20.17
leader-alignment 354.20.18
leader-length 354.20.19
leader-pattern 364.20.20
leader-pattern-width 364.20.21
link 374.20.22
list-style-type 374.20.23

ii

Table Of Contents

orientation 374.20.24
page 384.20.25
precedence 404.20.26
region 404.20.27
rowspan 404.20.28
rule-style 414.20.29
rule-sthickness 414.20.30
scaling 424.20.31
scaling-method 424.20.32
src 424.20.33
string-set 434.20.34
text-align-last 434.20.35
table-omit-footer-at-break 444.20.36
table-omit-header-at-break 444.20.37

Miscellaneous Specifications 454.21

The :blank Pseudo-class 454.21.1
The page And pages Counters 454.21.2
The page-ref Function 454.21.3
The string Function 454.21.4
The footnote Counter Style 454.21.5
The pcw Unit 454.21.6
The @namespace Rule 454.21.7

Embedding In An Application 475

API Specification 475.1

be.re.css.CSSToXSLFOFilter 475.1.1
be.re.css.CSSToXSLFOException 505.1.2
be.re.css.CSSToXSLFO 505.1.3

Examples 515.2

Example 1 525.2.1
Example 2 535.2.2
Example 3 545.2.3
Example 4 555.2.4
Example 5 565.2.5
Example 6 575.2.6

Some Techniques 596

Customising List Labels With Markers 596.1

iii

Table Of Contents

Making Section Numbers “Stick Out” 606.2

This Guide's Page Set-up 616.3

A Two-column Article 636.4

Initial Capitals 636.5

Special Provisions for XHTML 65A

The User Agent Style Sheet 67B

XHTML 67B.1

DeltaXML 72B.2

XLink 73B.3

References 75C

iv

Table Of Contents

introduction 1
csstoxslfo is a tool which converts an xml document, combined with a css2
style sheet, into an xsl-fo file. It has some special provisions for xhtml , which is
also an xml vocabulary. The tool implements a reasonable subset of css2 . It also
adds a few extensions for handling page-related issues properly. Note that the tool is
not a general-purpose printing tool for any kind of html pages you can find on the
Internet.

The goal of csstoxslfo is to provide a rather easy interface to fine printing
environments that use xsl-fo as their input. It is a compromise between the simpli-
city of style sheet expression and the quality of the result. xsl-fo is quite difficult.
Writing style sheets that produce it are mostly written in xslt , which is not
straightforward to everyone either. css on the other hand is rather simple and yet it
is powerful. In fact it combines element selection and formatting specification in one
easy-to-learn syntax. The cost is that a lot of interesting xsl-fo features are not
available.

An area where the tool can be a plus is the programmatic generation of reports
within applications. The variety in style for reports is not that great. The offered feature
set of csstoxslfo can be sufficient. Having report programmers learn xsl-fo
and xslt is not always an option, while many know css and xhtml well enough
to be productive with it.

Another use-case for csstoxslfo is writing documents in xml . One can put
work in a style sheet once and reuse that through the mark-up paradigm, in which
content and formatting are separated. The formatting features should be sufficient
to produce day-to-day documents in a typical business environment. Such documents
don't tend to be very complicated, with respect to layout that is.

1

in practice 2
2.1 specifying style sheets

The most general way of specifying a style sheet for a document with csstoxslfo
is the proposal in section 2.2 of [css2]. It consists of a processing instruction, which
precedes the document, looking like this:

 <?xml-stylesheet type="text/css" href="style.css"?>

For xhtml there are a few additional options. You can use the link element to
link a style sheet (only persistent style sheets) to the document or you can embed it
with the style element. The style attribute is also available as specified in
[xhtml].

2.2 running it

There are six packages you can run from the command-line: one that produces plain
xsl-fo , one that returns the output of xep , a product from RenderX (http://www.
renderx.com), another that returns the output of XSLFormatter, a product from An-
tenna House (http://www.antennahouse.com), yet another that returns the output of
Xinc, a product from Lunasil ltd (http://www.lunasil.com) and finally, two that run
fop (http://xml.apache.org/fop/). One is for version 0.20.5 and the other for version
0.91beta. The 0.20.5 one comes with a filter that removes a few properties, which are
not supported by fop . This makes fop complain less.

You need jdk1 .3 or higher to run the packages. For 1.3 you should create a
classpath with a namespace-aware xml parser and an xslt processor. The command-
lines look as follows for plain csstoxslfo :

 > java -jar css2xslfo.jar url_or_filename <options>

For xep3 :

 > java -Dcom.renderx.xep.ROOT=<XEP location> -jar css2xep.jar
 url_or_filename <options>

For xep4 :

 > java -Dcom.renderx.xep.CONFIG=<XEP location>/xep.xml
 -jar <XEP location>/lib/css2xep.jar url_or_filename
 <options>

3

http://www.renderx.com
http://www.renderx.com
http://www.antennahouse.com
http://www.lunasil.com
http://xml.apache.org/fop/

For XSLFormatter:

 > set dynamic library path to <XSLFormatter location>/lib
 > set environment variable AH_FONT_CONFIGFILE to
 <XSLFormatter location>/etc/font-config.xml
 > java -jar <XSLFormatter location>/lib/css2xsl.jar
 url_or_filename <options>

For Xinc:

 > java -jar css2xinc.jar url_or_filename <options>

For fop 0.20.5:

 > java -jar css2fop.jar url_or_filename <options>

For fop 0.91beta you should create a classpath with css2fopnew.jar, fop.jar and all
the jar files in the fop lib directory. The class you have to specify is be.re.css.
CSSToFOPNew.

Additional system properties and/or enviroment variables can be set. Please consult
the product-specific documentation for this.

In order for css2xep.jar to work, you should place it in the <XEP location>/lib
directory and create a link to or a copy of your xep jar file with the name “xep.jar”.
Since xep4 the link or copy are no longer needed, because the xep jar file has the
expected name. For css2xsl.jar to work, you should place it in <XSLFormatter loca-
tion>/lib. The css2fop.jar file needs to be next to fop.jar, which should be next to the
packages is uses. Therefore you should copy fop.jar from the fop build directory to
its lib directory. The css2xinc.jar should be in the xinc lib directory.

csstoxslfo uses the xslt-processor that comes with the jdk1 .4 , which is
Xalan from Apache. For better performance you can prepend Xalan 2.6.0+ or Saxon
8.3+ to your boot classpath as follows (assuming /usr/local as the installation directory
of Xalan):

 > java -Xbootclasspath/p:/usr/local/xalan-j_2_6_0/bin/xalan.jar
 -jar css2xslfo.jar url_or_filename <options>

You can also use jdk1 .5 , which comes with a faster xslt processor.
For xep there is a special note. You have to specify another xslt processor, be-

cause xep uses Saxon 6.5.x, with which it doesn't work. You can either prepend an-
other xslt processor to the boot classpath or you can simply copy saxon8.jar in the
xep lib directory.

4

In Practice

http://www.apache.org
http://xml.apache.org/xalan-j/
http://saxon.sourceforge.net/
http://saxon.sourceforge.net/

2.2.1 Common Options

The following options are common to all three variants. The document to be processed
can be specified with a url or filename. If it is omitted, stdin will be read.

-baseurl <URL>
Change the base URL of the input document. By default it is the url of the
document itself.

-c <URL or filename>
Specify a catalog in the format defined by SGML Open Technical Resolution
tr9401 :1997 . Only the “PUBLIC” and “SYSTEM” keywords are supported.

-h
Display the command-line syntax.

-p <comma-separated list of URLs or filenames>
A list of pre-processing xslt style sheets that are executed on the input docu-
ment, in the specified order, before anything else.

-uacss <URL or filename>
Use another User Agent style sheet than the one built-in for xhtml . Note that
the latter will only be active for documents which are in the xhtml namespace
(http://www.w3.org/1999/xhtml).

-v
Turn on xml validation of the input document.

parameter=value
Specify User Agent parameters. Equivalent css constructs precede these.

2.2.2 Options Specific To css2xslfo.jar

-debug
Produces a number of intermediary files representing the different processing
steps.

-fo <filename>
The xsl-fo output file. If it is omitted stdout will be written instead.

2.2.3 Options Specific To css2xep.jar

One the following options should be specified.

-pdf <filename>
The pdf output file.

-ps <filename>
The PostScript output file.

2.2.4 Options Specific To css2xsl.jar

-pdf <filename>
The pdf output file. This option is mandatory.

5

In Practice

2.2.5 Options Specific To css2fop.jar

-fc <filename>
An user configuration file.

-pdf <filename>
The pdf output file.

-ps <filename>
The PostScript output file.

-q
Makes fop silent.

-svg <filename>
The svg output file.

2.2.6 Options Specific To css2fopnew.jar

-fc <filename>
An user configuration file.

-pdf <filename>
The pdf output file.

-ps <filename>
The PostScript output file.

-svg <filename>
The svg output file.

2.2.7 Options Specific To css2xinc.jar

One the following options should be specified.

-pdf <filename>
The pdf output file.

2.2.8 User Agent Parameters

The User Agent parameters are common to all three packages. They have no effect if
there are @page rules in the style sheet, except for the “rule-thickness” parameter.
Furthermore, equivalent css constructs, when present in the style sheet, always pre-
cede.

column-count
The number of columns on a page. The default is “1”.

country
The country code. The default is “GB”.

font-size
The point size of the font. The default for paper sizes “a5” and “b5” is “10pt”.
For all other paper sizes the default is “11pt”. See also the “paper-size” parameter.

6

In Practice

html-header-mark
An html element can be passed here. Its contents will be used as the running
header. By default there is no mark.

language
The language code. The default is “en”.

odd-even-hift
The amount by which the page contents is shifted in the inline progression dir-
ection when the paper mode is “twosided”. The default is “10mm”. See also the
“paper-mode” parameter.

orientation
The allowed values are “portrait”, which is the default, and “landscape”.

paper-margin-bottom
The bottom margin of a page. The default is “0mm”.

paper-margin-left
The left margin of a page. The default is “25mm”.

paper-margin-right
The right margin of a page. The default is “25mm”.

paper-margin-top
The top margin of a page. The default is “10mm”.

paper-mode
The allowed values are “onesided”, which is the default, and “twosided”.

paper-size
The allowed values are “a4”, which is the default, “a0”, “a1”, “a2”, “a3”, “a5”, “b5”,
“executive”, “letter” and “legal”.

rule-thickness
The default thickness for rules when there was no css specification for it. The
default is “0.2pt”.

writing-mode
The xsl-fo writing mode. The default is “lr-tb”. Other possible values are “rl-
tb”, “tb-rl”, “lr”, “rl” and “tb”. See also [xsl-fo].

2.3 building csstoxslfo

The tool comes with an ant file. The default target only builds the css2xslfo.jar file.
Then there are also the xep, xsl, xinc, fop and fopnew targets, which produce
css2xep.jar, css2xsl.jar, css2xinc.jar, css2fop.jar and css2fopnew.jar respectively.

7

In Practice

http://ant.apache.org/

compliance with css2 3
3 . 1 specifications

Remarks and restrictionsImplementedSection

Thanks to Flute.yes4.1 Syntax

Unknown properties will end up
in the xsl-fo file and cause er-
rors in a xsl-fo processor.

partial4.2 Rules for handling parsing
errors

Thanks to Flute.yes4.3 Values

Thanks to Flute.yes4.4 css document representation

All sections but 5.11.2 and 5.11.3.
The :first-letter pseudo

partial5 Selectors

element is implemented with the
restriction that letter combina-
tions, which are considered as
one letter, are not examined. As
a workaround you can use the
ligature Unicode characters in-
stead. The vertical-align
is also valid when float is
none. In that case it applies to
the inline material which is af-
fected by the pseudo element.

yes6 Assigning property values,
Cascading and Inheritance

By design, only types all and
print are supported.

yes7 Media types

yes8 Box model

no9.1.1 The viewport

yes9.1.2 Containing blocks

9

Remarks and restrictionsImplementedSection

Compact and run-in boxes are
not supported.

partial9.2.1 Block-level elements and
block boxes

Compact and run-in boxes and
inline tables are not supported.

partial9.2.2 Inline-level elements and
inline boxes

no9.2.3 Compact boxes

no9.2.4 Run-in boxes

See property table.partial9.2.5 The 'display' property

yes9.3 Positioning schemes

yes9.4 Normal flow

yes9.5 Floats

yes9.6 Absolute positioning

yes9.7 Relationships between 'dis-
play', 'position', and 'float'

yes9.9 Layered presentation

yes9.10 Text direction: the 'direction'
and 'unicode-bibi' properties

See the property table for the
height property.

partial10 Visual formatting model de-
tails

yes11 Visual effects

yes12.1 The :before and :after
pseudo-elements

yes12.2 The 'content' property

no12.3 Interaction of :before and
:after with 'compact' and 'run-in'
elements

yes12.4 Quotation marks

yes12.5 Automatic counters and
numbering

yes12.6.1 Markers: the 'marker-offset'
property

10

Compliance With CSS2

Remarks and restrictionsImplementedSection

The list-style-image property is
not supported. See also the prop-
erty table.

partial12.6.2 Lists: the 'list-style-type',
'list-style-image', 'list-style-posi-
tion', and 'list-style' properties

yes13.2.1 Page margins

yes13.2.2 Page size: the 'size' property

no13.2.3 Crop marks: the 'marks'
property

yes13.2.4 Left, right, and first pages

yes13.2.5 Content outside the page
box

Named pages are only supported
for block-level and table ele-

partial13.3 Page breaks

ments, which are not inside of a
table and have an ancestor with
the region property set to
body.

yes13.4 Cascading in the page con-
text

yes14 Colors and Backgrounds

@font-face and descriptors are
not supported.

partial15 Fonts

yes16 Text

Inline tables are not supported.
Anonymous table objects are

partial17 Tables

only supported for missing table
groups and missing table cells in
a row, on the condition that there
are table column elements. Audio
rendering is not supported.

no18 User interface

no19 Aural style sheets

11

Compliance With CSS2

3 .2 properties

Remarks and restrictionsImplementedProperty

noazimuth

yesbackground

yesbackground-attachment

yesbackground-color

yesbackground-image

yesbackground-position

yesbackground-repeat

yesborder

yesborder-bottom

yesborder-bottom-color

yesborder-bottom-style

yesborder-bottom-width

Not for inline-table.partialborder-collapse

yesborder-color

yesborder-left

yesborder-left-color

yesborder-left-style

yesborder-left-width

yesborder-right

yesborder-right-color

yesborder-right-style

yesborder-right-width

Not for inline-table.partialborder-spacing

yesborder-style

12

Compliance With CSS2

Remarks and restrictionsImplementedProperty

yesborder-top

yesborder-top-color

yesborder-top-style

yesborder-top-width

yesborded-width

yesbottom

yescaption-side

yesclear

yesclip

yescolor

yescontent

yescounter-increment

yescounter-reset

nocue

nocue-after

nocue-before

nocursor

yesdirection

The values run-in, compact
and inline-table are not

partialdisplay

supported. The marker value is
supported with the limiation that
the value auto for the width
property is not. Markers also
don't work with floats.

noelevation

yesempty-cells

yesfloat

13

Compliance With CSS2

Remarks and restrictionsImplementedProperty

yesfonts

yesfont-family

yesfont-size

yesfont-size-adjust

yesfont-stretch

yesfont-style

yesfont-variant

yesfont-weight

A percentage value for the height
of a block, which is in another

partialheight

block with an explicit height, will
be treated as auto. This stems
from the fact that in this case a
block has to be split in a fo:block-
container and a nested fo:block,
because there are properties that
don't apply to both of them. The
inner original block will therefore
have a parent without an explicit
height specification. The latter
has moved to the surrounding
fo:block-container.

yesleft

yesletter-spacing

yesline-height

See individual properties.partiallist-style

nolist-style-image

A list should be uniform. Specify-
ing different values for different

partiallist-style-position

list items will produce undesired
results.

Only the values disc, circle,
square, decimal, lower-

partiallist-style-type

14

Compliance With CSS2

Remarks and restrictionsImplementedProperty

roman, upper-roman,
lower-alpha, lower-lat-
in, upper-alpha, upper-
latin and none are supported.
The additional glyphs defined in
[css3l] are also supported.
Those are box, check, dia-
mond and hyphen.

A list should be uniform.
Specifying different values for
different list items will produce
undesired results.

yesmargin

yesmargin-bottom

yesmargin-left

yesmargin-right

yesmargin-top

yesmarker-offset

nomarks

yesmax-height

yesmax-width

yesmin-height

yesmin-width

yesorphans

nooutline

nooutline-color

nooutline-style

nooutline-width

yesoverflow

yespadding

15

Compliance With CSS2

Remarks and restrictionsImplementedProperty

yespadding-bottom

yespadding-left

yespadding-right

yespadding-top

Only for block-level and table
elements, which are not inside of

partialpage

a table and have an ancestor with
the region property set to
body.

yespage-break-after

yespage-break-before

yespage-break-inside

nopause

nopause-after

nopause-before

nopitch

noplay-during

noplay-range

yesposition

yesquotes

norichness

yesright

yessize

nospeak

nospeak-header

nospeak-numeral

nospeak-punctuation

16

Compliance With CSS2

Remarks and restrictionsImplementedProperty

nospeech-rate

nostress

yestable-layout

yestext-align

yestext-decoration

yestext-indent

yestext-transform

yestop

yesunicode-bibi

yesvertical-align

yesvisibility

novoice-family

novolume

yeswhite-space

yeswidows

yeswidth

yesword-spacing

yesz-index

17

Compliance With CSS2

extensions 4
The extension features of the tool mostly pertain to page-oriented aspects. Care has
been taken to not introduce new syntax. There are, however, a number of new prop-
erties. Those are normally safely ignored by browsers. In the case where there would
be an impact on the layout produced by browsers, the properties can be confined to
the “print” medium through @media rules.

4.1 page regions

This extension introduces xsl-fo-compatible page regions. Regions can be defined
by placing a region property on an element. The allowed values are bottom, left,
right, top and body. At least one element with the region property set to body
should be present in the document.1 Page sequences are only generated for the content
of such an element. The regions other than the body region must be the first direct
children of the body region. Otherwise they are ignored. In the case of xhtml , for
example, this means that they should come at the beginning of the body element.

On top of that, either the width property, for left and right regions, or the
height property, for top and bottom regions, should be defined. They will determine
the dimensions of the page regions. The default value for width is “20mm”. For
height it is “10mm”.

The extension property precedence is also available for the top and bottom
regions. Its value can be true or false, the latter being the initial value. The
property says whether the width of the top or bottom region is equal to that of the
page reference area or if they give way to the left and right regions.

The regions work together with the @page rules, of which there should be at least
one. It is possible to specify different regions, which correspond to the different page
types in the style sheet. This can be achieved by also specifying the page property,
which is a standard css2 property. Consider the following example:

 div.bottom-left, div.bottom-right { display: none; }

 @media print
 {
 div.bottom-left
 {
 height: 15mm;
 page: left;
 region: bottom;
 text-align: left;

1 The xhtml User Agent style sheet sets this property to the body element.

19

 }

 div.bottom-right
 {
 height: 15mm;
 page: right;
 region: bottom;
 text-align: right;
 }

 span.page:before { content: counter(page); }
 }

This says that on left pages the bottom region is left-aligned, while on right pages it
is right-aligned. The span element is used in the following region definitions:

 <div class="bottom-left">
 <p> </p>
 <div></div>
 </div>

 <div class="bottom-right">
 <p> </p>
 <div></div>
 </div>

The page property bears a kind of inheritance mechanism. For any page the regions
with the most specific page property will be selected. A region without a page
property is the least specific. A named page is more specific and the values left and
right are yet more specific. After this comes the new pseudo page blank, which
is for blank pages that are generated because of page positioning constraints such as
left and right. The first page of a chapter, for example, is sometimes forced to be a
right page. This can produce an extra blank page for the previous chapter. In fact,
this maps directly to the xsl-fo blank pages. There are special values, which are
even more specific, such as first-right, blank-left, left-<page-name>,
etc. If, for example, there is no bottom region for first-right, but there is one
for first, the latter will be selected if the first page happens to on the right. See
section “page” for the precise precedence rules.

In order for the top, bottom, left and right region elements not to interfere with
the normal flow it is best to set their display type to none.

4.2 page numbering

The two special counters page and pages in this tool are taken over from the css3
Paged Media Module (see also [css3p]). The page can be used just like any other
counter, except that it is confined to the regions. The following example shows a
document with a preface and a body. Each reset the page count. The preface has a
lower Roman numbering style, while the body uses the decimal style. If the body page
didn't reset the counter, numbering would continue from the preface, but with a
change of style.

20

Extensions

 <?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title></title>
 <style type="text/css">
 @page preface
 {
 counter-reset: page;
 margin: 10%;
 }

 @page body
 {
 counter-reset: page;
 margin: 10%;
 }

 div.bottom-preface
 {
 page: preface;
 region: bottom;
 }

 div.bottom-body
 {
 page: body;
 region: bottom;
 }

 div.bottom-preface > span.page:before
 {
 content: counter(page, lower-roman);
 }

 div.bottom-body > span.page:before
 {
 content: counter(page, decimal);
 }

 div.preface { page: preface; }
 div.body { page: body; }
 </style>
 </head>
 <body>
 <div class="bottom-preface"></div>
 <div class="bottom-body"></div>
 <div class="preface">
 <p>Text.</p>
 </div>
 <div class="body">
 <p>Text.</p>
 </div>

21

Extensions

 </body>
 </html>

When switching between named pages you can control how the ending named page
sequence should be terminated with the extension property force-page-count.
For example, it some page sequence produces five pages, you can force the sequence
to produce six pages by setting the property to even. An extra blank page will then
be generated before starting the new page sequence. If you don't want such behaviour,
you should set the property to no-force, since the initial value is auto.

4.3 page references

You sometimes want to write phrases like “The diagram on page 19 ...”. The
csstoxslfo tool provides this functionality through the page-ref function,
which can be used in the content property. Its only parameter is the name of an
attribute that contains the id of another element. The function call will be replaced
with the number of the page that element is on.

In xhtml it is a bit more complicated to achieve the desired result, because there
aren't many extension attributes available for it. The following fragment shows how
it can be done:

 ...

The accompanying style sheet rule would then be:

 span.page-ref > span:before { content: page-ref(class); }

4.4 leaders

It is possible to use xsl-fo leaders through the display type leader. The properties
defined in section 7.21 of [xsl-fo] (“Leader and Rule Properties”) can be used in a
css style sheet, with the exception that the leader-length property cannot have
a length range as a value. If you want to create table of contents lines or something
similar, you also need the xsl-fo property text-align-last, described in
section 7.15.10 of [xsl-fo]. The following example shows how a table of contents
line could be made in xhtml .

 <div class="toc">
 Title of Chapter 1

 </div>

The piece of style sheet that goes with it is:

 div.toc
 {

22

Extensions

 text-align-last: justify;
 }

 span.leader
 {
 display: leader;
 leader-pattern: dots;
 leader-pattern-width: 5pt;
 }

 span.page-ref > span:before
 {
 content: page-ref(class);
 }

4.5 named strings

Named strings, as described in [css3g], are supported in csstoxslfo . This consists
of the string-set property, with which contents can be captured, and the
string() function. The latter can occur in the value of the content property.
The string-set property accepts values which are similar to those of the content
property. There is an additional keyword contents, which is replaced with the
string value of the element carrying the string-set property.

The following is a simple xhtml example of how you can create a running
header that refers to the current chapter.

 <body>
 <div class="top">

 </div>
 ...
 <h1>Chapter Title</h1>
 ...
 </body>

Here is the bit of style sheet that does it:

 div.top
 {
 region: top;
 display: none;
 }

 div.top > span.mark:before { content: string(mark); }

 h1 { string-set: mark contents; }

4.6 hyphenation

Text can be hyphenated through the hyphenate property, which is inherited. The
possible values are true and false. Hyphenation is turned off by default.

23

Extensions

4.7 footnotes

It is possible to produce footnotes using the footnote-reference and foot-
note-body display types. The former is displayed in the flow, while the latter goes
to the footnote area at the bottom of the page. When a footnote body occurs it must
be either immediately preceded by a footnote reference or have a :before pseudo
element with the display type footnote-reference. Otherwise it is treated as
if the display were none. Whitespace between a footnote reference and body is
gobbled. A footnote reference can also occur on its own.

The contents of both the footnote reference and body is free. Both display types
exist to give you complete control over the contents and style. Usually some footnote
counter is used, as shown in the example below. There is an extra counter style
footnote, which produces symbols, such as an asterix, dagger, etc.

 h1 { counter-reset: footnote; }

 span.footnote-body
 {
 display: footnote-body;
 font-size: 0.83em;
 }

 span.footnote-body:before
 {
 content: counter(footnote);
 padding-right: 1em;
 }

 span.footnote-reference
 {
 display: footnote-reference;
 }

 span.footnote-reference:before
 {
 counter-increment: footnote;
 content: counter(footnote);
 font-size: 0.83em;
 vertical-align: super;
 }

In the document a footnote would then look like this:

 <p>Paragraph text.Footnote text.</p>

You might find it cumbersome to have to place a footnote reference in front of every
footnote body. It can be avoided, at the expense of formatting control however. You
can define a :before pseudo element for the footnote body and give it the display
type footnote-reference. Whatever contents it generates will then be used for
the reference in the flow, as well as in the footnote body at the bottom of the page. As

24

Extensions

a consequence, the style is constrained by the fact that it must be decent for both
contexts. The style sheet becomes a bit simpler:

 h1 { counter-reset: footnote; }

 span.footnote-body
 {
 display: footnote-body;
 font-size: 0.83em;
 }

 span.footnote-body:before
 {
 counter-increment: footnote;
 content: counter(footnote);
 display: footnote-reference;
 font-size: 0.83em;
 vertical-align: super;
 }

If you want full control over the formatting in both contexts and at the same time
want to omit the footnote reference elements in the document, the solution is to
preprocess the document. The transformation is rather trivial.

4.8 orientation

You can rotate text with the orientation property. This works only for block-
level elements. The possible values are 0, 90, 180, 270, -90, -180, -270. They represent
the degrees in the counter-clockwise direction. The initial value is 0.

4.9 list style types

The glyphs for the list-style-type property, as defined in [css3l], are imple-
mented.

4.10 multicolumn

With the properties column-count, which must be strictly positive, and column-
gap, which is a length, a multi-column layout can be specified for a page. Both
properties are allowed in an @page rule. As a consequence, if you want to switch
between column modes, you have to switch pages as well.

With the column-span property a blocks and tables, that are not themselves
inside of another table, can be made to span all the columns of a multi-column page.
The allowed values for the property are all and none.

25

Extensions

4.11 change bars

The change bar properties introduced in [xsl-fo11] are available for :before and
:after pseudo elements. For the latter, only the change-bar-class property
is relevant. The following is a simple example:

 p.changed:before
 {
 change-bar-class: changed;
 change-bar-style: solid; /* initial value is none */
 change-bar-width: 0.2pt;
 }

 p.changed:after { change-bar-class: changed; }

Note that this feature only works for xep4 at the moment.

4.12 links

The link property can have the name of an attribute as its value. The value of that
attribute will be used for the generated link, as the target url or the internal target
id , if it is an idref attribute, which distinguishes it from a relative url . Likewise,
the value of the anchor property can be the name of an attribute, the value of which
will become the target id . This way an internal link destination can be created. For
example:

 a[href] { link: href; }
 a[name] { anchor: name; }

4.13 graphics

An external graphic can be included in a document through the display type
graphic. The xsl-fo properties content-height, content-width, con-
tent-type, scaling and scaling-method are supported. Their definition
is in [xsl-fo]. The property src is interpreted differently. Its value should be the
name of an attribute that has a uri for a value. For the xhtml element img, for
example, the User Agent style sheet contains the following:

 img
 {
 content-height: scale-to-fit;
 content-width: scale-to-fit;
 display: graphic;
 scaling: uniform;
 src: src;
 }

26

Extensions

4.14 column and row spanning

In xhtml one can specify column and row spanning with the colspan and
rowspan attributes on the td and th elements. It is, however, also possible to apply
css to other xml vocabularies. Hence, there should be an equivalent feature in css
to express this. The extension properties colspan and rowspan serve that purpose.
They can be used for elements with the display type table-cell.

4.15 proportional column widths

Again in xhtml it is possible to say that a column should occupy a relative portion
of the total table width. It is done by setting the width attribute to a number, followed
by an asterix. If we have, for example, three columns with the widths “1*”, “2*” and
“3*”, they occupy 1, 2 and 3 sixth of the table width respectively. This is not part of
the html specification, but it is a widely supported feature.

In order to provide it for other xml vocabularies then xhtml , the unit pcw,
which stands for “proportional column width”, is available for the width property
of an element with the display type table-column.

4.16 repeating table headers and footers

By default table headers and footers are repeated when a table spans several pages.
You can suppress this by setting the table-omit-header-at-break and
table-omit-footer-at-break properties to true respectively.

4.17 css3 namespaces

Namespaces for selectors, as defined in [css3s], are implemented. This means you
can use namespace prefixes in element selectors and attribute conditions. The prefixes
are separated from the local name with a pipe sign (“|”).

The namespaces are declared with the @namespace rule, which should always
come right after the @import rules if there are any. In the following example the
xhtml namespace has been declared as the default namespace. Next to that, the
DeltaXML namespace is declared with the prefix “dx”. You also see the use of the
“attr” function with an attribute that has a prefix.

 @namespace url(http://www.w3.org/1999/xhtml);
 @namespace dx
 url(http://www.deltaxml.com/ns/well-formed-delta-v1);

 *[dx|delta=add], dx|new
 {
 text-decoration: underline;
 }

 *[dx|delta=delete], dx|old
 {

27

Extensions

 text-decoration: line-through;
 }

 p[dx|delta]:before
 {
 content: attr(dx|delta);
 display: marker;
 marker-offset: 0.5em;
 text-align: right;
 }

4.18 wrappers

When processing xml in general you might encounter elements which represent
pure structure, i.e. they are not directly related to layout. For such elements there
shouldn't be any formatting objects in the output. Normally you would have to pre-
process the document in order to get rid of them in the proper way.

The display type wrapper is introduced to cope with common cases. When an
element has this display type, it will not contribute any formatting objects. However,
its inherited properties will be passed on to its child elements, according to the
property inheritance rules.

With respect to xml processing, a wrapper seems to be “transparant”. Note
however that, while a wrapper can occur anywhere, it influences css selector
matching. For instance, it will interfere with “direct sibling” and “direct child” selectors.

4.19 foreign elements

With the display type foreign it is possible to transfer part of a document unmod-
ified to an fo:instream-foreign-object element. This may be useful for
elements that are in another namespace than that of the document itself and which
are supported by the xsl-fo processor. Typical examples are svg and MathML.

4.20 property specifications

4.20.1 anchor

<identifier> | attr(X)Value:
noneInitial:
block-level and inline-level elementsApplies to:
noInherited:
N/APercentages:
printMedia:

<identifier>
The qualified name of an attribute, the value of which is the target id . This type
of value is deprecated, because it doesn't support namespace prefixes.

28

Extensions

attr(X)
This returns the value of the attribute of the subject with the qualified name X.
The css3 namespace prefixes are supported. The value is the target id .

4.20.2 change-bar-class

<name>Value:
none, value requiredInitial:
before and after pseudo elementsApplies to:
noInherited:
N/APercentages:
printMedia:

<name>
An NCName, as defined in [names], to allow pairing of before and after ele-
ments, which don't have to belong to the same element. This way a change bar
context is created.

4.20.3 change-bar-color

<color>Value:
the value of the color propertyInitial:
before pseudo elementsApplies to:
noInherited:
N/APercentages:
printMedia:

<color>
Specifies the color of the change bar.

4.20.4 change-bar-offset

<length>Value:
6ptInitial:
before pseudo elementsApplies to:
noInherited:
N/APercentages:
printMedia:

<length>
Gives the distance from the edge of the column area containing the text that is
marked as changed to the center of the generated change bar. A positive distance
is directed away from the column region and into the margin regardless of the
change-bar-placement property. Relative lengths (i.e., percentage values
and lengths with units of “em”) are not permitted for the value of this property.

29

Extensions

4.20.5 change-bar-placement

left | right | inside | outside | alternateValue:
startInitial:
before pseudo elementsApplies to:
noInherited:
N/APercentages:
printMedia:

alternate
When there are exactly two columns, the change bar will be offset from the left
edge of all column one areas and the right edge of all column two areas; when
there are any other number of columns, this value is equivalent to “outside”.

inside
If the page binding edge is on the left-edge, the change bar will be offset from
the left edge of all column areas. If the binding is the right-edge, the change bar
will be offset from the right edge of all column areas. If the page binding edge
is on neither the left-edge nor right-edge, the change bar will be offset from the
left edge of all column areas.

left
The change bar will be offset from the left edge of all column areas.

outside
If the page binding edge is on the left-edge, the change bar will be offset from
the right edge of all column areas. If the binding is the right-edge, the change
bar will be offset from the left edge of all column areas. If the page binding edge
is on neither the left-edge nor right-edge, the change bar will be offset from the
right edge of all column areas.

right
The change bar will be offset from the right edge of all column areas.

4.20.6 change-bar-style

<border-style>Value:
noneInitial:
before pseudo elementsApplies to:
noInherited:
N/APercentages:
printMedia:

4.20.7 change-bar-width

<border-width>Value:
mediumInitial:
before pseudo elementsApplies to:
noInherited:
N/APercentages:

30

Extensions

printMedia:

<border-width>
Relative lengths (i.e., percentage values and lengths with units of “em”) are not
permitted for the value of this property.

4.20.8 colspan

<integer>Value:
1Initial:
table cellsApplies to:
noInherited:
N/APercentages:
printMedia:

<integer>
Expresses the number of columns the table cell will span. The value must be
larger than or equal to 1.

4.20.9 column-count

<integer>Value:
1Initial:
the page contextApplies to:
noInherited:
N/APercentages:
printMedia:

<integer>
The value must be larger than or equal to 1.

4.20.10 column-gap

<length> | <percentage>Value:
12.0ptInitial:
the page contextApplies to:
noInherited:
refer to the width of the body regionPercentages:
printMedia:

<length>
This is an unsigned length, If a negative value has been specified a value of 0pt
will be used.

<percentage>
The value is a percentage of the width of the body region.

31

Extensions

4.20.11 column-span

none | allValue:
noneInitial:
block elements which are not in table elementsApplies to:
noInherited:
N/APercentages:
printMedia:

all
This element spans all columns of a multi-column region.

none
This element does not span multiple columns of a multi-column region.

4.20.12 content-height

auto | scale-to-fit | <length> | <percentage>Value:
autoInitial:
graphic elementsApplies to:
noInherited:
intrinsic heightPercentages:
printMedia:

auto
The content-height should be the intrinsic content-height.

scale-to-fit
A size of the content-height equal to the height of the viewport. This implies a
certain scaling factor to be applied onto the content.

<length>
An absolute size for the content-height. This implies a certain scaling factor to
be applied onto the content.

<percentage>
A percentage representing a scaling factor applied to the intrinsic height.

4.20.13 content-type

auto | <string>Value:
autoInitial:
graphic elementsApplies to:
noInherited:
intrinsic heightPercentages:
printMedia:

auto
No identification of the content-type. The User Agent may determine it by
“sniffing” or by other means.

32

Extensions

<string>
A specification of the content-type in terms of a mime-type, which has the form
“content-type:” followed by a mime content-type, e.g., content-type="content-
type:image/svg+xml".

4.20.14 content-width

auto | scale-to-fit | <length> | <percentage>Value:
autoInitial:
graphic elementsApplies to:
noInherited:
intrinsic widthPercentages:
printMedia:

auto
The content-width should be the intrinsic content-width.

scale-to-fit
A size of the content-width equal to the width of the viewport. This implies a
certain scaling factor to be applied onto the content.

<length>
An absolute size for the content-width. This implies a certain scaling factor to
be applied onto the content.

<percentage>
A percentage representing a scaling factor applied to the intrinsic width.

4.20.15 display

This section specifies additional values for the property.

footnote-body | footnote-reference | foreign | graphic | leader | wrapperValue:
inlineInitial:
all elementsApplies to:
noInherited:
N/APercentages:
printMedia:

footnote-body
The contents of the element goes to the footnote area. The element must be
either immediately preceded by an element of type footnote-reference
or have a :before pseudo element of that type. Otherwise it is treated as if its
display type were none. Whitespace between a footnote reference and body is
removed. In case a pseudo element is used, the contents it generates is displayed
in the flow, as well as in the footnote body.

footnote-reference
This is an inline variant. Its contents is displayed in the flow. It can occur without
a following footnote-body element.

33

Extensions

foreign
If an element has this display type, it is placed unmodified in an fo:in-
stream-foreign-object element.

graphic
This display type is used to include external graphics.

leader
This display type is used to produce xsl-fo leaders.

wrapper
An element with this display type doesn't contribute any formatting objects. Its
inherited properties are nevertheless inherited by its subtree.

4.20.16 force-page-count

auto | even | odd | end-on-even | end-on-odd | no-forceValue:
autoInitial:
the page contextApplies to:
noInherited:
N/APercentages:
printMedia:

The property is used to impose a constraint on the number of pages in a page sequence.
In the event that this constraint is not satisfied, an additional page will be added to
the end of the sequence. This page becomes the “last” page of that sequence.

auto
Force the last page in this page sequence to be an odd page if the initial page
number of the next page sequence is even. Force it to be an even page if the initial
page number of the next page sequence is odd. If there is no next page sequence
or if the value of its initial page number is “auto” do not force any page.

even
Force an even number of pages in this page sequence.

odd
Force an odd number of pages in this page sequence.

end-on-even
Force the last page in this page sequence to be an even page.

end-on-odd
Force the last page in this page sequence to be an odd page.

no-force
Do not force either an even or an odd number of pages in this page sequence.

4.20.17 hyphenate

false | trueValue:
falseInitial:
block-level and inline-level elementsApplies to:
yesInherited:
N/APercentages:

34

Extensions

printMedia:

false
Hyphenation is not active for the text in this element.

true
Hyphenation is active for the text in this element.

4.20.18 leader-alignment

none | reference-area | pageValue:
noneInitial:
leader elementsApplies to:
yesInherited:
N/APercentages:
printMedia:

Specifies whether leader elements having identical content and property values shall
have their patterns aligned with each other, with respect to their common reference-
area or page. For leader elements where the leader-pattern property is specified
as dots or as use-content, this property will be honored. If the leader elements
is aligned, the left-edge of each cycle of the repeated pattern will be placed on the left-
edge of the next cycle in the appropriate pattern-alignment grid.

none
Leader-pattern has no special alignment.

page
Leader-pattern is aligned as if it began on the current page's left-edge.

reference-area
Leader-pattern is aligned as if it began on the current reference-area's content-
rectangle left-edge.

4.20.19 leader-length

<length> | <percentage>Value:
12.0ptInitial:
leader elementsApplies to:
yesInherited:
refer to the width of the content-rectangle of the parent area.Percentages:
printMedia:

<length>
Sets the length of a leader element.

<percentage>
Sets the length of a leader element to a percentage of the width of the content-
rectangle of the parent area.

35

Extensions

4.20.20 leader-pattern

space | rule | dots | use-contentValue:
spaceInitial:
leader elementsApplies to:
yesInherited:
N/APercentages:
printMedia:

dots
Leader is to be filled with a repeating sequence of dots. The choice of dot char-
acter is dependent on the user agent.

rule
Leader is to be filled with a rule. If this choice is selected, the rule-thickness
and rule-style properties are used to set the leader's style.

space
Leader is to be filled with blank space.

use-content
Leader is to be filled with a repeating pattern as specified by the children of the
leader element.

4.20.21 leader-pattern-width

use-font-metrics | <length> | <percentage>Value:
use-font-metricsInitial:
leader elementsApplies to:
yesInherited:
refer to the width of the content-rectangle of the parent area.Percentages:
printMedia:

use-font-metrics
Use the width of the leader-pattern as determined from its font metrics.

<length>
Sets the length for leader-pattern-repeating. The leader will have an inline-space
inserted after each pattern cycle to account for any difference between the width
of the pattern as determined by the font metrics and the width specified in this
property. If the length specified is less than the value that would be determined
via the use-font-metrics choice, the value of this property is computed
as if use-font-metrics choice had been specified.

<percentage>
Sets the length for leader-pattern-repeating to a percentage of the width of the
content-rectangle of the parent area.

For leader elements where the leader-pattern property is specified as dots or
as use-content, this property will be honored.

36

Extensions

4.20.22 link

<identifier> | attr(X)Value:
noneInitial:
block-level and inline-level elementsApplies to:
noInherited:
N/APercentages:
printMedia:

<identifier>
The qualified name of an attribute, the value of which is either a target id or a
uri . It is considered as an id if the attribute is of type idref . This way a dis-
tinction is made with a relative url . Note that the attribute type information
should be available. This requires a document type definition. This type of value
is deprecated, because it doesn't support namespace prefixes.

attr(X)
This returns the value of the attribute of the subject with the qualified name X.
The css3 namespace prefixes are supported. The value is considered as an id
if the attribute is of type idref . This way a distinction is made with a relative
url . Note that the attribute type information should be available. This requires
a document type definition.

4.20.23 list-style-type

This section specifies additional glyph values for the property.

box | check | diamond | hyphenValue:
discInitial:
elements with “display: list-item”Applies to:
yesInherited:
N/APercentages:
printMedia:

box
A hollow square.

check
A check mark.

diamond
A filled diamond.

hyphen
A hyphen bullet.

4.20.24 orientation

0 | 90 | 180 | 270 | -90 | -180 | -270Value:
0Initial:
block elementsApplies to:

37

Extensions

yesInherited:
N/APercentages:
printMedia:

0
The material in this element is not rotated.

90
The material in this element is rotated 90 degrees counter-clockwise with respect
to the containing block element.

180
The material in this element is rotated 180 degrees counter-clockwise with respect
to the containing block element.

270
The material in this element is rotated 270 degrees counter-clockwise with respect
to the containing block element.

-90
The material in this element is rotated 90 degrees clockwise with respect to the
containing block element.

-180
The material in this element is rotated 180 degrees clockwise with respect to the
containing block element.

-270
The material in this element is rotated 270 degrees clockwise with respect to the
containing block element.

4.20.25 page

This section specifies the property in the context of static regions. It defines the pages
to which the static region applies. If more than one static region of the same kind
(left, right, top or bottom) applies to a page, the most specific is selected, i.e. the one
for which the most conditions are fulfilled. Each property value expresses a number
of conditions.

auto | first | left | right | blank | first-left | first-right | blank-left | blank-
right | first-<identifier> | left-<identifier> | right-<identifier> | blank-

Value:

<identifier> | first-left-<identifier> | first-right-<identifier> | blank-left-
<identifier> | blank-right-<identifier> | <identifier>
autoInitial:
static regionsApplies to:
noInherited:
N/APercentages:
printMedia:

auto
Applies to any page.

38

Extensions

blank
Applies if the page is a blank page. Blank pages can be generated, for example,
when page breaks are forced to left or right pages.

blank-left
Applies if the page is a blank and a left page.

blank-right
Applies if the page is a blank and a right page.

blank-<identifier>
Applies if the page is a blank and a named page, with the name set to the specified
identifier.

blank-left-<identifier>
Applies if the page is a blank, left and named page, with the name set to the
specified identifier.

blank-right-<identifier>
Applies if the page is a blank, right and named page, with the name set to the
specified identifier.

first
Applies if the page is a first page.

first-left
Applies if the page is a first and a left page.

first-right
Applies if the page is a first and a right page.

first-<identifier>
Applies if the page is a first and a named page, with the name set to the specified
identifier. When the document switches to a named page sequence, using the
page property in the regular way, the first page of that sequence is a first page.

first-left-<identifier>
Applies if the page is a first, left and named page, with the name set to the spe-
cified identifier.

first-right-<identifier>
Applies if the page is a first, right and named page, with the name set to the
specified identifier.

left
Applies if the page is a left page.

left-<identifier>
Applies if the page is a left and a named page, with the name set to the specified
identifier.

right
Applies if the page is a right page.

right-<identifier>
Applies if the page is a right and a named page, with the name set to the specified
identifier.

<identifier>
Applies if the page is a named page, with the name set to the specified identifier.

39

Extensions

4.20.26 precedence

false | trueValue:
falseInitial:
static top and bottom regionsApplies to:
noInherited:
N/APercentages:
printMedia:

false
The width of the region is reduced by the incursions of the left and right regions.

true
The height of the left and right regions is reduced by the incursions of this region.

4.20.27 region

body | left | right | top | bottom | noneValue:
noneInitial:
all elements, but see proseApplies to:
noInherited:
N/APercentages:
printMedia:

body
There should be one element with this value for the property. For the contents
of this element the page sequences will be generated.

bottom
This element becomes the bottom static region. The pages for which this is the
case can be limited through the page property.

left
This element becomes the left static region.

none
The element is not a region.

right
This element becomes the right static region.

top
This element becomes the top static region.

The static region elements should be the first child elements of the body region. In
other words, they should precede all elements which are not static regions, otherwise
their region property is ignored. The property is also ignored if there are no @page
rules. In that case the default page set-up is generated.

4.20.28 rowspan

<integer>Value:
1Initial:

40

Extensions

table cellsApplies to:
noInherited:
N/APercentages:
printMedia:

<integer>
Expresses the number of rows the table cell will span. The value must be larger
than or equal to 1.

4.20.29 rule-style

This property applies only if the leader-pattern property is specified as rule.

none | dotted | dashed | solid | double | groove | ridgeValue:
solidInitial:
leader elementsApplies to:
yesInherited:
N/APercentages:
printMedia:

dashed
The rule is a series of short line segments.

dotted
The rule is a series of dots.

double
The rule is two solid lines. The sum of the two lines and the space between them
equals the value of the rule-thickness property.

groove
The rule looks as though it were carved into the canvas. (Top/left half of the
rule's thickness is the color specified; the other half is white.)

none
No rule, forces rule-thickness to 0.

ridge
The opposite of “groove”, the rule looks as though it were coming out of the
canvas. (Bottom/right half of the rule's thickness is the color specified; the other
half is white.)

solid
The rule is a single line segment.

4.20.30 rule-sthickness

This property applies only if the leader-pattern property is specified as rule.

<length>Value:
1.0ptInitial:
leader elementsApplies to:
yesInherited:

41

Extensions

N/APercentages:
printMedia:

<length>
The rule-thickness is always perpendicular to its length-axis. The rule is thickened
equally above and below the line's alignment position.

4.20.31 scaling

uniform | non-uniformValue:
uniformInitial:
graphic elementsApplies to:
noInherited:
intrinsic widthPercentages:
printMedia:

non-uniform
Scaling need not preserve the intrinsic aspect ratio.

uniform
Scaling should preserve the intrinsic aspect ratio.

4.20.32 scaling-method

auto | integer-pixels | resample-any-methodValue:
autoInitial:
graphic elementsApplies to:
noInherited:
intrinsic widthPercentages:
printMedia:

auto
The User Agent is free to choose either resampling, integer scaling, or any other
scaling method.

integer-pixels
The User Agent should scale the image such that each pixel in the original image
is scaled to the nearest integer number of device-pixels that yields an image less-
then-or-equal-to the image size derived from the content-height, content-width,
and scaling properties.

resample-any-method
The User Agent should resample the supplied image to provide an image that
fills the size derived from the content-height, content-width, and
scaling properties. The user agent may use any sampling method.

4.20.33 src

<identifier> | attr(X)Value:
none, value requiredInitial:

42

Extensions

graphic elementsApplies to:
noInherited:
N/APercentages:
printMedia:

<identifier>
The qualified name of an attribute, the value of which is a uri . This type of
value is deprecated, because it doesn't support namespace prefixes.

attr(X)
This returns the value of the attribute of the subject with the qualified name X.
The css3 namespace prefixes are supported. The value is a uri .

4.20.34 string-set

none | <identifier> contents | <identifier> <content>Value:
noneInitial:
all elementsApplies to:
noInherited:
N/APercentages:
printMedia:

none
No named string is set.

<identifier> contents
The string named by the identifier is set to the textual contents of the element.

<identifier> <content>
The string named by the identifier is set to the result of the evaluation of the
expression in <content>. The syntax for the expression is the same as that for
the content property.

4.20.35 text-align-last

<identifier>Value:
relativeInitial:
block elementsApplies to:
noInherited:
N/APercentages:
printMedia:

center
Specifies that the contents is to be centered horizontally.

inside
If the page binding edge is on the left-edge, the alignment will be left. If the
binding is on the right-edge, the alignment will be right. If neither, use left
alignment.

justify
Specifies that the contents is to be expanded to fill the available width.

43

Extensions

left
Specifies that the contents is to be aligned on the left-edge.

outside
If the page binding edge is on the left-edge, the alignment will be right. If the
binding is on the right-edge, the alignment will be left. If neither, use right
alignment.

relative
If text-align is justify, then the alignment of the last line, and of any
line ending in U+000A, will be left. If text-align is not justify, text-
align-last will use the value of text-align.

right
Specifies that the contents is to be aligned on the right-edge.

4.20.36 table-omit-footer-at-break

false | trueValue:
falseInitial:
tablesApplies to:
noInherited:
N/APercentages:
printMedia:

false
This property specifies that the footer should not be ommitted.

true
This property specifies that the footer should be ommitted.

4.20.37 table-omit-header-at-break

false | trueValue:
falseInitial:
tablesApplies to:
noInherited:
N/APercentages:
printMedia:

false
This property specifies that the header should not be ommitted.

true
This property specifies that the header should be ommitted.

44

Extensions

4.21 miscellaneous specifications

4.21.1 The :blank Pseudo-class

The :blank pseudo-class is available to specify properties in the page context for blank
pages. Those can be generated, for example, when pages are forced to start at the left
or right.

4.21.2 The page And pages Counters

The page counter represents the current page number, while the pages counter rep-
resents the total number of pages in the document. Both can be used in static regions
only. The page counter may be reset in the page context.

4.21.3 The page-ref Function

The page-ref function can be used in the content property. Its only parameter is
either the qualified name of an attribute that contains the id of another element, or
the attr(X) function, where X is the qualified name of such an attribute. The former
is deprecated, because it doesn't support css3 namespace prefixes, while the latter
does. The function call will be replaced with the number of the page the target element
is on.

4.21.4 The string Function

The string function produces the string that was saved with a string-set property.
Its argument is the name used in a string-set property. If a named string is set
more than once on a page, the first occurrence will be returned by the string function.

4.21.5 The footnote Counter Style

This counter style produces symbols in the following order: *, †, ‡, §, ||, ¶, #, **, ††,
‡‡, §§. If the counter value if larger than the number of symbols in the preceding list,
the * symbol is generated.

4.21.6 The pcw Unit

This unit is available for the width property of an element with display type table-
column. It expresses the proportional width for a table column. The value should
be divided by the sum of all the present proportional widths, which itself is equal to
the width of the table minus all fixed column widths.

4.21.7 The @namespace Rule

With the @namespace rule a namespace can be declared, with or without a prefix. In
the latter case it is the default namespace. The scope of a declared namespace is limited

45

Extensions

to the style sheet entity in which it is declared. The @namespace rule should come
right after the @import rules if there are any and before all other rules. An @namespace
rule has an optional prefix argument, which is an identifier, followed by a mandatory
uri specification. Consult [css3s] to learn how namespaces work with selectors.

46

Extensions

embedding in an application 5
5 . 1 api specification

5.1.1 be.re.css.CSSToXSLFOFilter

This class extends org.xml.sax.helpers.XMLFilterImpl. The source of the sax events
that are sent through the filter must be namespace aware. If it is an xml parser this
option must be turned on.

Constructors

public CSSToXSLFOFilter
(

java.net.URL baseUrl,
java.net.URL userAgentStyleSheet,
java.util.Map userAgentParameters,
XMLReader parent,
boolean debug

) throws CSSToXSLFOException

baseUrl
The baseUrl is used to resolve relative urls. This includes references to style
sheets as well as other resources. Because of the latter the resulting xsl-fo
document is not relocatable. The relative urls in the input document are
transformed into absolute ones using the baseUrl. This copes with the case
where the input document is an anonymous stream that refers to style sheets in
a relative way. The set of style sheets is then relocatable through the baseUrl.

If baseUrl is null no resolution of relative urls will be done.
userAgentStyleSheet

The default style sheet for the filter. It is used in the way described in section
6.4 of [css2]. If the parameter is null, a default style sheet for xhtml is used.

userAgentParameters
These are defined in section “User Agent Parameters”.

parent
The parent filter. It must not be null.

debug
If debug is true a number of debug files are dumped. They show the results
of the internal processing steps.

47

http://www.saxproject.org/apidoc/org/xml/sax/helpers/XMLFilterImpl.html
http://java.sun.com/j2se/1.4.2/docs/api/java/net/URL.html
http://java.sun.com/j2se/1.4.2/docs/api/java/net/URL.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/Map.html
http://www.saxproject.org/apidoc/org/xml/sax/XMLReader.html

public CSSToXSLFOFilter
(

java.net.URL baseUrl,
java.net.URL userAgentStyleSheet,
java.util.Map userAgentParameters,
XMLReader parent

) throws CSSToXSLFOException

Constructs the filter with debug set to false.

public CSSToXSLFOFilter
(

java.net.URL baseUrl,
java.net.URL userAgentStyleSheet,
XMLReader parent

) throws CSSToXSLFOException

Constructs the filter with an empty userAgentParameters map and debug set
to false.

public CSSToXSLFOFilter
(

java.net.URL baseUrl,
XMLReader parent

) throws CSSToXSLFOException

Constructs the filter with userAgentStyleSheet set to null, an empty user-
AgentParameters map and debug set to false.

public CSSToXSLFOFilter
(

XMLReader parent
) throws CSSToXSLFOException

Constructs the filter with baseUrl and userAgentStyleSheet set to null,
an empty userAgentParameters map and debug set to false.

public CSSToXSLFOFilter
(

java.net.URL baseUrl,
java.net.URL userAgentStyleSheet,
java.util.Map userAgentParameters,
boolean debug

) throws CSSToXSLFOException

Constructs the filter without a parent.

48

Embedding In An Application

http://java.sun.com/j2se/1.4.2/docs/api/java/net/URL.html
http://java.sun.com/j2se/1.4.2/docs/api/java/net/URL.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/Map.html
http://www.saxproject.org/apidoc/org/xml/sax/XMLReader.html
http://java.sun.com/j2se/1.4.2/docs/api/java/net/URL.html
http://java.sun.com/j2se/1.4.2/docs/api/java/net/URL.html
http://www.saxproject.org/apidoc/org/xml/sax/XMLReader.html
http://java.sun.com/j2se/1.4.2/docs/api/java/net/URL.html
http://www.saxproject.org/apidoc/org/xml/sax/XMLReader.html
http://www.saxproject.org/apidoc/org/xml/sax/XMLReader.html
http://java.sun.com/j2se/1.4.2/docs/api/java/net/URL.html
http://java.sun.com/j2se/1.4.2/docs/api/java/net/URL.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/Map.html

public CSSToXSLFOFilter
(

java.net.URL baseUrl,
java.net.URL userAgentStyleSheet,
java.util.Map userAgentParameters

) throws CSSToXSLFOException

Constructs the filter without a parent and debug set to false.

public CSSToXSLFOFilter
(

java.net.URL baseUrl,
java.net.URL userAgentStyleSheet

) throws CSSToXSLFOException

Constructs the filter without a parent, an empty userAgentParameters map
and debug set to false.

public CSSToXSLFOFilter(java.net.URL baseUrl) throws CSSToXSLFOException

Constructs the filter without a parent, userAgentStyleSheet set to null, an
empty userAgentParameters map and debug set to false.

public CSSToXSLFOFilter() throws CSSToXSLFOException

Constructs the filter without a parent, baseUrl and userAgentStyleSheet
set to null, an empty userAgentParameters map and debug set to false.

Methods

public java.net.URL getBaseUrl()

Returns the base url of the filter. It is either set in a constructor or with the set-
BaseUrl method.

public java.util.Map getParameters()

Returns the User Agent parameters of the filter. They are either set in a constructor
or with the setUserAgentStyleSheet method.

public java.net.URL getUserAgentStyleSheet()

Returns the User Agent style sheet of the filter. It is either set in a constructor or with
the setUserAgentStyleSheet method.

public void setBaseUrl(java.net.URL baseUrl)

49

Embedding In An Application

http://java.sun.com/j2se/1.4.2/docs/api/java/net/URL.html
http://java.sun.com/j2se/1.4.2/docs/api/java/net/URL.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/Map.html
http://java.sun.com/j2se/1.4.2/docs/api/java/net/URL.html
http://java.sun.com/j2se/1.4.2/docs/api/java/net/URL.html
http://java.sun.com/j2se/1.4.2/docs/api/java/net/URL.html
http://java.sun.com/j2se/1.4.2/docs/api/java/net/URL.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/Map.html
http://java.sun.com/j2se/1.4.2/docs/api/java/net/URL.html
http://java.sun.com/j2se/1.4.2/docs/api/java/net/URL.html

Sets the base url of the filter. The base url is used to resolve relative urls in the
input document. See also baseUrl.

public void setParameters(java.util.Map parameters)

Sets the User Agent parameters of the filter. See also userAgentParameters.

public void setUserAgentStyleSheet(java.net.URL userAgentStyleSheet)

Sets the User Agent style sheet of the filter. See also userAgentStyleSheet.

5.1.2 be.re.css.CSSToXSLFOException

This class extends java.lang.Exception.

Constructors

public CSSToXSLFOException(java.lang.Exception e)

This is just a wrapper around e.

public CSSToXSLFOException(java.lang.String message)

The parameter will be returned by the method getMessage.

5.1.3 be.re.css.CSSToXSLFO

This class contains a few convenience methods with which an xml filter set-up can
be avoided, because they do it for you.

Methods

public static void convert
(

java.io.InputStream in,
java.io.OutputStream out,
java.net.URL baseUrl,
java.net.URL userAgentStyleSheet,
java.net.URL catalog,
java.util.Map userAgentParameters,
java.net.URL[] preprocessors,
boolean validate,
boolean debug

) throws java.io.IOException, CSSToXSLFOException

in
The input document. It must not be null.

50

Embedding In An Application

http://java.sun.com/j2se/1.4.2/docs/api/java/util/Map.html
http://java.sun.com/j2se/1.4.2/docs/api/java/net/URL.html
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Exception.html
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Exception.html
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Throwable.html#getMessage()
http://java.sun.com/j2se/1.4.2/docs/api/java/io.InputStream.html
http://java.sun.com/j2se/1.4.2/docs/api/java/io.OutputStream.html
http://java.sun.com/j2se/1.4.2/docs/api/java/net/URL.html
http://java.sun.com/j2se/1.4.2/docs/api/java/net/URL.html
http://java.sun.com/j2se/1.4.2/docs/api/java/net/URL.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/Map.html
http://java.sun.com/j2se/1.4.2/docs/api/java/net/URL.html
http://java.sun.com/j2se/1.4.2/docs/api/java/io.IOException.html

out
The output document. It must not be null.

baseUrl
See baseUrl.

userAgentStyleSheet
See userAgentStyleSheet.

catalog
The catalog used to resolve entities during xml parsing. It must have the format
defined by SGML Open Technical Resolution tr9401 :1997 . Only the “PUBLIC”
and “SYSTEM” keywords are supported. It may be null.

userAgentParameters
See userAgentParameters.

preprocessors
An array of xslt style sheets. The input goes through them in the specified
order and before the CSSToXSLFOFilter.

validate
Turns on validation during xml parsing of the input document.

debug
See debug.

public static void convert
(

java.io.InputStream in,
java.io.OutputStream out,
java.net.URL userAgentStyleSheet

) throws java.io.IOException, CSSToXSLFOException

Calls the first variant of convert with baseUrl, catalog and preprocessors
set to null, validate and debug set to false and an empty userAgentPara-
meters map.

public static void convert
(

java.io.InputStream in,
java.io.OutputStream out

) throws java.io.IOException, CSSToXSLFOException

Calls the first variant of convert with baseUrl, userAgentStyleSheet,
catalog and preprocessors set to null, validate and debug set to false
and an empty userAgentParameters map.

5 .2 examples

Since CSSToXSLFOFilter is derived from org.xml.sax.helpers.XMLFilterImpl., it im-
plements all sax event interfaces, as well as org.xml.sax.XMLFilter. As a consequence,
the filter can occur in input and output filter chains.

51

Embedding In An Application

http://java.sun.com/j2se/1.4.2/docs/api/java/io.InputStream.html
http://java.sun.com/j2se/1.4.2/docs/api/java/io.OutputStream.html
http://java.sun.com/j2se/1.4.2/docs/api/java/net/URL.html
http://java.sun.com/j2se/1.4.2/docs/api/java/io.IOException.html
http://java.sun.com/j2se/1.4.2/docs/api/java/io.InputStream.html
http://java.sun.com/j2se/1.4.2/docs/api/java/io.OutputStream.html
http://java.sun.com/j2se/1.4.2/docs/api/java/io.IOException.html
http://www.saxproject.org/apidoc/org/xml/sax/helpers/XMLFilterImpl.html
http://www.saxproject.org/apidoc/org/xml/sax/XMLFilter.html

5.2.1 Example 1

The most straight-forward scenario is an application that reads the input document
from a file and that writes an xsl-fo document into another file. For this we need
an xml parser that can produce sax events. The parser implements the org.xml.sax.
XMLReader interface, so we can make it the parent of CSSToXSLFOFilter.

In order to create a parser, we first have to set up the parser factory and make it
namespace-aware. This happens at the lines 6 through 8. The filter can now be created
with the input document as the base url (in case any relative urls need to be re-
solved) and an xml parser as its parent. This is done at the lines 9 through 14.

We now have to prepare the output part. We use an xslt transformer without
a style sheet to copy the sax events to the output. The transformer must be in a form
that accepts sax events. This is why a javax.xml.transform.sax.TransformerHandler
is created at lines 15 through 19. It implements the org.xml.sax.ContentHandler inter-
face. By giving it the output file as a result (lines 20 through 26), the sax events are
transformed in the xml syntax.

The input and output parts can now be connected by setting the content handler
of the filter to the transformer handler (line 27). The whole chain is then activated by
calling the parse method, passing it the input document in the form of a file. The
filter will pass this call onto the parser, which is its parent. The parser starts producing
sax events that go through the filter and into the transformer handler.

 1 public class Example1
 2 {
 3 public static void
 4 main(String[] args) throws Exception
 5 {
 6 javax.xml.parsers.SAXParserFactory factory =
 7 javax.xml.parsers.SAXParserFactory.newInstance();

 8 factory.setNamespaceAware(true);

 9 be.re.css.CSSToXSLFOFilter filter =
10 new be.re.css.CSSToXSLFOFilter
11 (
12 new java.io.File(args[0]).toURL(), // base URL.
13 factory.newSAXParser().getXMLReader()
14);

15 javax.xml.transform.sax.TransformerHandler handler =
16 (
17 (javax.xml.transform.sax.SAXTransformerFactory)
18 javax.xml.transform.TransformerFactory.newInstance()
19).newTransformerHandler();

20 handler.setResult
21 (
22 new javax.xml.transform.stream.StreamResult
23 (
24 new java.io.File(args[1])
25)

52

Embedding In An Application

http://www.saxproject.org/apidoc/org/xml/sax/XMLReader.html
http://www.saxproject.org/apidoc/org/xml/sax/XMLReader.html
http://java.sun.com/j2se/1.4.2/docs/api/javax/xml/transform/sax/TransformerHandler.html
http://www.saxproject.org/apidoc/org/xml/sax/ContentHandler.html

26);

27 filter.setContentHandler(handler);

28 filter.parse
29 (
30 new org.xml.sax.InputSource
31 (
32 new java.io.FileInputStream(args[0])
33)
34);
35 }
36 }

5.2.2 Example 2

A variation of the previous example is to perform the transformation of the sax
events coming out of the filter to xml syntax in another way. In the previous example
the parser had the control flow and the transformer acted as a handler of sax events.
We can also give the control flow to a transformer that reads the input and copies it
to the output, because we don't give it any style sheet. We need to create a javax.xml.
transform.Transformer. It is done at lines 15 through 17. The actual transformation
is launched at lines 18 through 32. For this to work, we have to wrap our filter in a
javax.xml.transform.sax.SAXSource. For the transformer it is as if it is going to call
an xml parser.

 1 public class Example2
 2 {
 3 public static void
 4 main(String[] args) throws Exception
 5 {
 6 javax.xml.parsers.SAXParserFactory factory =
 7 javax.xml.parsers.SAXParserFactory.newInstance();

 8 factory.setNamespaceAware(true);

 9 be.re.css.CSSToXSLFOFilter filter =
10 new be.re.css.CSSToXSLFOFilter
11 (
12 new java.io.File(args[0]).toURL(), // base URL.
13 factory.newSAXParser().getXMLReader()
14);

15 javax.xml.transform.Transformer transformer =
16 javax.xml.transform.TransformerFactory.newInstance().
17 newTransformer();

18 transformer.transform
19 (
20 new javax.xml.transform.sax.SAXSource
21 (
22 filter, // Acts as the XMLReader.
23 new org.xml.sax.InputSource

53

Embedding In An Application

http://java.sun.com/j2se/1.4.2/docs/api/javax/xml/transform/Transformer.html
http://java.sun.com/j2se/1.4.2/docs/api/javax/xml/transform/Transformer.html
http://java.sun.com/j2se/1.4.2/docs/api/javax/xml/transform/sax/SAXSource.html

24 (
25 new java.io.FileInputStream(args[0])
26)
27),
28 new javax.xml.transform.stream.StreamResult
29 (
30 new java.io.File(args[1])
31)
32);
33 }
34 }

5.2.3 Example 3

This example shows how a pre-processing step can be added to the filter chain. The
input document is transformed by the pre-processor and the resulting sax events
go through the conversion filter. The pre-processor is created at lines 9 through 13.
This one does nothing, i.e. it lets the events go through unmodified. In reality you
would replace it with a class of your own.

The pre-processor instead of the filter is now initialised with the xml parser as
its parent. The pre-processor will become the parent of the filter, as shown at line 18.
When the parse method is called, the filter passes the call onto the pre-processor,
which in turn passes it onto the parser. The sax events produced by the parser will
then flow through the pre-processor, which in turn forwards them, possibly modified,
to the filter.

 1 public class Example3
 2 {
 3 public static void
 4 main(String[] args) throws Exception
 5 {
 6 javax.xml.parsers.SAXParserFactory factory =
 7 javax.xml.parsers.SAXParserFactory.newInstance();

 8 factory.setNamespaceAware(true);

 9 org.xml.sax.helpers.XMLFilterImpl myPreprocessor =
10 new org.xml.sax.helpers.XMLFilterImpl
11 (
12 factory.newSAXParser().getXMLReader()
13);

14 be.re.css.CSSToXSLFOFilter filter =
15 new be.re.css.CSSToXSLFOFilter
16 (
17 new java.io.File(args[0]).toURL(), // base URL.
18 myPreprocessor
19);

20 javax.xml.transform.sax.TransformerHandler handler =
21 (
22 (javax.xml.transform.sax.SAXTransformerFactory)
23 javax.xml.transform.TransformerFactory.newInstance()

54

Embedding In An Application

24).newTransformerHandler();

25 handler.setResult
26 (
27 new javax.xml.transform.stream.StreamResult
28 (
29 new java.io.File(args[1])
30)
31);

32 filter.setContentHandler(handler);

33 filter.parse
34 (
35 new org.xml.sax.InputSource
36 (
37 new java.io.FileInputStream(args[0])
38)
39);
40 }
41 }

5.2.4 Example 4

The previous example can be modified in such a way that the pre-processor is an
xslt style sheet. From this style sheet a org.xml.sax.XMLFilter must be made, because
it will sit between the xml parser and the filter. This is shown at lines 9 through 19.
The transformer factory is re-used afterwards to create also the output handler.

 1 public class Example4
 2 {
 3 public static void
 4 main(String[] args) throws Exception
 5 {
 6 javax.xml.parsers.SAXParserFactory factory =
 7 javax.xml.parsers.SAXParserFactory.newInstance();

 8 factory.setNamespaceAware(true);

 9 javax.xml.transform.sax.SAXTransformerFactory trFactory =
10 (javax.xml.transform.sax.SAXTransformerFactory)
11 javax.xml.transform.TransformerFactory.newInstance();

12 org.xml.sax.XMLFilter myPreprocessor =
13 trFactory.newXMLFilter
14 (
15 new javax.xml.transform.stream.StreamSource
16 (
17 new java.io.File(args[2])
18)
19);

20 myPreprocessor.setParent
21 (

55

Embedding In An Application

http://www.saxproject.org/apidoc/org/xml/sax/XMLFilter.html

22 factory.newSAXParser().getXMLReader()
23);

24 be.re.css.CSSToXSLFOFilter filter =
25 new be.re.css.CSSToXSLFOFilter
26 (
27 new java.io.File(args[0]).toURL(), // base URL.
28 myPreprocessor
29);

30 javax.xml.transform.sax.TransformerHandler handler =
31 trFactory.newTransformerHandler();

32 handler.setResult
33 (
34 new javax.xml.transform.stream.StreamResult
35 (
36 new java.io.File(args[1])
37)
38);

39 filter.setContentHandler(handler);

40 filter.parse
41 (
42 new org.xml.sax.InputSource
43 (
44 new java.io.FileInputStream(args[0])
45)
46);
47 }
48 }

5.2.5 Example 5

In all previous examples we have been parsing an input document. In some applica-
tions, however, the data might come from somewhere else. It is possible, for example,
to synthesize the xml from data that resides in the database. In such a scenario our
filter no longer has a parent but becomes the sax event handler of some system
method, generateReport in this example.1 This system method has the control
flow. It fetches the data and generates the sax events. In the case the generated xml
stream is not suitable for css conversion, a pre-processor may be specified as the
parent of the filter.

 1 public class Example5
 2 {
 3 public static void
 4 main(String[] args) throws Exception
 5 {
 6 be.re.css.CSSToXSLFOFilter filter =

1 Note that a real system method would probably need more than just the filter to do its work. It
would therefore have more parameters.

56

Embedding In An Application

 7 new be.re.css.CSSToXSLFOFilter();

 8 javax.xml.transform.sax.TransformerHandler handler =
 9 (
10 (javax.xml.transform.sax.SAXTransformerFactory)
11 javax.xml.transform.TransformerFactory.newInstance()
12).newTransformerHandler();

13 handler.setResult
14 (
15 new javax.xml.transform.stream.StreamResult
16 (
17 new java.io.File(args[0])
18)
19);

20 filter.setContentHandler(handler);
21 generateReport(filter);
22 }

23 private static void
24 generateReport(org.xml.sax.ContentHandler handler)
25 {
26 }
27 }

5.2.6 Example 6

It may be the case that you want to synthesize the xml stream in a system method,
which needs the control flow, but that the interface of your xsl-fo formatter is such
that it also needs the control flow. In other words, the formatter is not available in
the form of a sax event handler, but has some method that must be called to perform
the actual formatting. At lines 21 through 31 there a hypothetical example of such a
formatter.

To solve this control flow conflict you can create an adapter that implements the
org.xml.sax.XMLReader interface. Instead of actually parsing some xml you let both
parse methods call your system method. The parameters the latter needs are passed
through the constructor of the adapter. When the formatter now calls the parse
method it really ends up calling the system method, which synthesizes the sax events.

 1 public class Example6
 2 {
 3 public static void
 4 main(String[] args) throws Exception
 5 {
 6 be.re.css.CSSToXSLFOFilter filter =
 7 new be.re.css.CSSToXSLFOFilter
 8 (
 9 new MyReportGenerator(new Object())
10);
11 MyXSLFOFormatter myFormatter = new MyXSLFOFormatter();

12 myFormatter.format

57

Embedding In An Application

http://www.saxproject.org/apidoc/org/xml/sax/XMLReader.html

13 (
14 new javax.xml.transform.sax.SAXSource(filter, null),
15 new java.io.FileOutputStream(args[0]));
16 }

17 private static void
18 generateReport(Object context)
19 {
20 }

21 public static class MyXSLFOFormatter
22 {
23 public void
24 format
25 (
26 javax.xml.transform.Source source,
27 java.io.OutputStream out
28)
29 {
30 }
31 }

32 public static class MyReportGenerator
33 extends org.xml.sax.helpers.XMLFilterImpl
34 {
35 private Object context;

36 public
37 MyReportGenerator(Object context)
38 {
39 this.context = context;
40 }

41 public void
42 parse(org.xml.sax.InputSource input)
43 throws org.xml.sax.SAXException, java.io.IOException
44 {
45 generateReport(context);
46 }

47 public void
48 parse(String systemId)
49 throws org.xml.sax.SAXException, java.io.IOException
50 {
51 generateReport(context);
52 }
53 }
54 }

58

Embedding In An Application

some techniques 6
A few practical cases of formatting contructs, which are either more advanced or not
yet very common, are described in this chapter. Gradually, new cases will be added.
The chapter is some sort of “how to” section in the user guide. The examples use
xhtml as the input document language.

6.1 customising list labels with markers

The genaration of the labels of an itemised list is somewhat fixed. It depends on the
value of the list-style-type property.1 Sometimes, however, more control is
required over how the labels look like. This can be achieved through markers.

Basically, you have to specify a :before pseudo element with the display type
marker in your style sheet for those elements you have given the display type list-
item. Strictly speaking that display type is not needed, but if you are about to convert
your existing lists, those elements would have that display type.

In the pseudo element you have control over the formatting of the label. The only
exception is that the width property must be fixed. The tool doesn't support the
automatic calculation of the required width. If your style sheet doesn't specify a width,
a default value will be used. In order to not depend on this value, it is best to specify
one.

The following example is an ordered list with a nested ordered list in the second
item. We are going to change the numbering as well as the alignment of the labels.

 Item 1
 Item 2

 Subitem 1
 Subitem 2
 Subitem 3

 Item 3

In the style sheet we say that the :before pseudo element of any li under a ol,
no matter the level, is a marker. In there, we increment the counter that is reset for
each level of ol. We also display it with the lower-roman counter style instead of
the default style (decimal). This style will show the effect of the right alignment of

1 The list-style-image and list-style-position properties are not supported by this
tool.

59

the text inside the label. The marker-offset property provides for a bit of space
between the label and the list item body.

The width property deserves special attention. First of all it defines the width of
the labels. Since markers shouldn't influence the positioning of the element they are
attached to, the labels would stick out to the left by the amount of the value of the
width property. In order to compensate this, we have to add a margin-left with
the same value to the list item itself.

 ol { counter-reset: list-counter; }

 ol li { margin-left: 2em; }

 ol li:before
 {
 content: counter(list-counter, lower-roman) ".";
 counter-increment: list-counter;
 display: marker;
 marker-offset: 0.5em;
 text-align: right;
 width: 2em;
 }

The rendered result would like this:

Item 1i.

Item 2ii.

Subitem 1i.

Subitem 2ii.

Subitem 3iii.

Item 3iii.

making section numbers “stick out”6.2

Sometimes the text of the section titles must be aligned with the rest of the material,
at the left side for example. As consequence, if the titles also have section numbers,
those will stick out at the left side of the title, into the margin, just like the title of the
current section. This can be obtained by specifying a :before pseudo element for
the section titles with the display type marker. Because markers shouldn't influence
the positioning of their associated element, the marker content is prepended. This is
the piece of style sheet you would need:

 h2:before
 {
 display: marker;
 marker-offset: 0.5em;
 padding-right: 0pt;
 text-align: right;

60

Some Techniques

 width: 3em;
 }

6.3 this guide 's page set-up

The page set-up of this guide is rather advanced and is therefore an interesting prac-
tical case. The difficulty lies in specifying the static regions if there are many kinds of
pages and if for each of those the static regions are different. i.e. very specific.

In order to avoid an explosion of css property specifications for all those regions,
we can work in a sort of multidimensional way. This is possible through the combin-
ation of two things. First, we have the css cascading mechanism, which allows us to
centralise common property specifications. Second, the can make use of the fact that
the class attribute is a space-separated list of names. Because of this, an element
can belong to several classes. These are the static regions of this guide:

 <div class="first top"/>
 <div class="title first bottom"/>
 <div class="title first top"/>
 <div class="copy-right first bottom"/>
 <div class="copy-right first top"/>
 <div class="left bottom"></div>
 <div class="right bottom"></div>
 <div class="left top"></div>
 <div class="right top"></div>
 <div class="front left bottom"></div>
 <div class="front right bottom"></div>
 <div class="blank bottom"/>
 <div class="blank top"/>

Neither of them has a lot of content. It is all generated using the span element as a
hook. For the empty div elements no content will be generated. You can see that all
regions belong to more than one class. The more classes they belong to, the more
specific is the set of pages they apply to. This is one dimension. The other is whether
the static region is a top or bottom region.

The first region, for example, is a bottom region that applies only to the first page
of the named page sequence called “title”. This is expressed in the style sheet as follows:

 div.title.first
 {
 page: first-title;
 }

The rule applies if class is “title” and “first”. This is more specific then the following
page assignment which also occurs in the style sheet:

 div.first
 {
 page: first;
 }

61

Some Techniques

Another example is the pair of bottom regions for left and right pages. They apply
for left and right pages, no matter the page sequence. For the “front” page sequence,
however, there is a more specific version. Making it more specific is done by the two
page assignments in the following style sheet part. The style of the bottom region of
the front part is a bit different. It display the page numbers in lower Roman. The
complete style is obtained by cascading all the rules for the class “bottom”. The first
two rules define the style for all bottom regions and the last one overrides the counter
style.

 div.bottom
 {
 height: 3em;
 padding-top: 2em;
 region: bottom;
 }

 div.bottom > span:before
 {
 content: counter(page);
 }

 div.front.left
 {
 page: left-front;
 }

 div.front.right
 {
 page: right-front;
 }

 div.front.bottom > span:before
 {
 content: counter(page, lower-roman);
 }

For blank pages we want no static regions at all, at least not visually. The presence of
the top and bottom regions is defined generally through the div.top and
div.bottom rules. As a consequence, no matter the page sequence, those static
regions are always generated. All we have to do now is making sure they don't contain
anything. This is done by the two empty regions with the class attribute set to
“blank top” and “blank bottom” respectively. Those regions are assigned to blank
pages with the following style sheet part:

 div.blank
 {
 page: blank;
 }

There is one more special construct left to discuss: the absence of static top regions
on the first page of a chapter. As with blank pages they are not really absent. They are
merely made empty. It is in fact the first region with the classes “first” and “top”. This

62

Some Techniques

region is assigned to the first pseudo page. All chapters are however in the named
page sequence “main”. If we do nothing only the first page of the first chapter will
have an empty top region. We therefore should toggle the page property without
adding extra pages. This can be achieved by inserting an empty div element between
the chapters with the class “separator”. The page assignment for that class is “separat-
or”. This named page is not used for anything else. Since the element is empty no
page sequence is generated. The next “main” element, however, will start a new page
sequence.

After the front matter not only the page number style changes to decimal, but the
page numbering is also reset. We can't just reset the page counter in the “main” page
context, because then the numbering would be reset for each chapter. Instead, the
style sheet defines a main-first @page rule, which contains the same definitions
as main and a page counter reset on top of it. This page is assigned to the first
chapter only, using the first-child pseudo-class on the h1 element.

6.4 a two-column article

Many articles and papers are formatted in two column mode. The title, abstract, au-
thors, etc. are usually displayed across the two columns. With two extension properties
it is possible to do this. The column-count should be set to “2” in the page context.
The title material can be wrapped in a block element for which the column-span
property is set to “all”.

6.5 initial capitals

A typographical effect that is often used are initial capitals. It consists of making
the first letter of an article or chapter stand out by rendering it bigger and
perhaps in another font and/or colour. In css this is supported through the

:first-letter pseudo element, which is described in section 5.12.2 of [css2].
In csstoxslfo it is implemented with the restriction that letter combinations,
which are considered as one letter, are not examined. In case you need that, you can
always use the Unicode ligature characters instead.

The technique was applied to the previous paragraph using the piece of style sheet
below. Note the second deviation from the specification being the usage of the property
vertical-align while the float property has the value none. It is allowed in
csstoxslfo because otherwise we have no control over the alignment of the first
letter with the lines next to it. This depends on the font and will always require some
trial and error in order to get it right. The values for the other properties are obtained
in the same way. In fact, for this special case, we work around the normal way a glyph
is layed out in a line.

 p:first-letter
 {
 font-family: serif-swash;
 font-size: 46pt;
 font-style: italic;
 float: left;

63

Some Techniques

 line-height: 46pt;
 padding-right: 6pt;
 margin-bottom: -12pt;
 vertical-align: 9pt;
 }

64

Some Techniques

special provisions for xhtml A
While the tool works for any xml vocabulary it does a number of things for xhtml
specifically. Other vocabularies may be supported in the same way at some later stage.
The items are the following:

• Non-css presentational hints are translated to the corresponding css rules, as
prescribed in section 6.4.4 of [css2];

• The lang attribute is honored;

• Hyperlinks are recognized and translated in xsl-fo links;

• The link element can be used to specify external style sheets;

• Style sheets can be embedded with the style element;

• The style attribute is honored;

• The img element is interpreted and processed;

• The html-header-mark user agent parameter is available;

• There is a user agent style sheet for xhtml that cascades against the one in ap-
pendix A of [css2].

65

the user agent style sheet B
b.1 xhtml

@import "xhtml.css";
@namespace url(http://www.w3.org/1999/xhtml);

@media print
{
 a[href]
 {
 color: blue;
 link: attr(href);
 text-decoration: none;
 }

 a[name]
 {
 anchor: name;
 }

 blockquote, dl, ol, p, ul
 {
 margin: 0.83em 0pt;
 }

 blockquote
 {
 margin-left: 3em;
 margin-right: 3em;
 }

 body
 {
 font-family: serif;
 padding: 0pt;
 region: body;
 }

 body:lang(da)
 {
 quotes: "\00BB" "\00AB";
 }

 body:lang(de-DE), body:lang(de-AT)
 {
 quotes: "\201E" "\201C" "\201A" "\2018"

67

 }

 body, body:lang(en), body:lang(es)
 {
 quotes: "\201C" "\201D" "\2018" "\2019";
 }

 body:lang(fr)
 {
 quotes: "\00AB " " \00BB" "\2039 " " \203A";
 }

 body:lang(it)
 {
 quotes: "\00AB " " \00BB";
 }

 body:lang(nl)
 {
 quotes: "\201D" "\201D" "\2019" "\2019";
 }

 body:lang(no), bodylang:(pt), body:lang(de-CH)
 {
 quotes: "\00AB" "\00BB" "\2039" "\203A"
 }

 body:lang(sv)
 {
 quotes: "\00BB" "\00BB";
 }

 caption
 {
 margin: 0.5em 0pt;
 }

 dt
 {
 page-break-after: avoid;
 }

 h1
 {
 font-size: 1.6em;
 margin-bottom: 0.7em;
 margin-top: 1.4em;
 }

 h2
 {
 font-size: 1.3em;
 margin-bottom: 0.6em;
 margin-top: 1.2em;
 }

68

The User Agent Style Sheet

 h3
 {
 font-size: 1.1em;
 }

 h3, h4
 {
 margin-bottom: 0.5em;
 margin-top: 1em;
 }

 h1, h2, h3, h4, h5, h6
 {
 hyphenate: false;
 }

 hr
 {
 border: 0.1pt solid;
 }

 img
 {
 content-height: scale-to-fit;
 content-width: scale-to-fit;
 display: graphic;
 scaling: uniform;
 src: attr(src);
 }

 li
 {
 margin-bottom: 0.8em;
 margin-top: 0.8em;
 }

 li p, li blockquote, li dl, li ol, li ul
 {
 margin-bottom: 0.5em;
 margin-top: 0.5em;
 }

 li li
 {
 margin-bottom: 0.5em;
 margin-top: 0.5em;
 }

 li li p, li li blockquote, li li dl, li li ol, li li ul
 {
 margin-bottom: 0.3em;
 margin-top: 0.3em;
 }

69

The User Agent Style Sheet

 li li li
 {
 margin-bottom: 0.4em;
 margin-top: 0.4em;
 }

 li li li p, li li li blockquote, li li li dl, li li li ol,
 li li li ul
 {
 margin-bottom: 0.3em;
 margin-top: 0.3em;
 }

 li, p
 {
 text-align: justify;
 }

 pre
 {
 font-size: 0.85em;
 }

 ul
 {
 list-style-type: disc;
 }

 ol li ul, ul li ul
 {
 list-style-type: circle;
 }

 ol li ol li ul, ol li ul li ul, ul li ol li ul, ul li ul li ul
 {
 list-style-type: square;
 }

 q:after
 {
 content: close-quote;
 }

 q:before
 {
 content: open-quote;
 }

 script
 {
 display: none;
 }

 span.section-number
 {

70

The User Agent Style Sheet

 padding-right: 1em;
 }
}

71

The User Agent Style Sheet

b.2 deltaxml

@namespace deltaxml
 url(http://www.deltaxml.com/ns/well-formed-delta-v1);

@media print
{
 deltaxml|PCDATAnew, deltaxml|PCDATAold
 {
 display: inline;
 }

 deltaxml|exchange, deltaxml|new, deltaxml|old
 {
 display: wrapper;
 }

 *[deltaxml|delta="add"], deltaxml|PCDATAnew, deltaxml|new
 {
 text-decoration: underline;
 }

 *[deltaxml|delta="delete"], deltaxml|PCDATAold, deltaxml|old
 {
 text-decoration: line-through;
 }

 *[deltaxml|delta="add"]:before, deltaxml|PCDATAnew:before,
 deltaxml|new, *[deltaxml|delta="delete"]:before,
 deltaxml|PCDATAold:before, deltaxml|old
 {
 change-bar-class: changed;
 change-bar-placement: alternate;
 change-bar-style: solid;
 change-bar-width: 0.2pt;
 }

 *[deltaxml|delta="add"]:after, deltaxml|PCDATAnew:after,
 *[deltaxml|delta="delete"]:after, deltaxml|PCDATAold:after
 {
 change-bar-class: changed;
 }
}

72

The User Agent Style Sheet

b.3 xlink

@namespace xlink url(http://www.w3.org/1999/xlink);

@media print
{
 *[xlink|href]
 {
 link: attr(xlink|href);
 }
}

73

The User Agent Style Sheet

references C
[css2]

“Cascading Style Sheets, level 2, CSS2 Specification”, W3C Recommendation 12
May 1998, Bert Bos, Håkon Wium Lie, Chris Lilley, Ian Jacobs, ht-
tp://www.w3.org/TR/1998/REC-CSS2-19980512.

[css3g]
“CSS3 Generated and Replaced Content Module”, W3C Working Draft 14 May
2003, Ian Hickson, http://www.w3.org/TR/2003/WD-css3-content-20030514.

[css3l]
“CSS3 module: Lists”, W3C Working Draft 7 November 2002, Ian Hickson,
Tantek Çelik, http://www.w3.org/TR/2004/WD-css3-lists-20021107.

[css3p]
“CSS3 Paged Media Module”, W3C Candidate Recommendation 25 February
2004, Håkon Wium Lie, Jim Bigelow, http://www.w3.org/TR/2004/CR-css3-
page-20040225.

[css3s]
“CSS3 Selectors”, W3C Candidate Recommendation 13 November 2001, Daniel
Glazman, Tantek Çelik, Ian Hickson, http://www.w3.org/TR/2001/CR-css3-se-
lectors-20011113.

[delta]
“How DeltaXML Represents Changes to XML Files”, DeltaXML Ltd., ht-
tp://www.deltaxml.com/library/how-deltaxml-represents-changes.html.

[names]
“Namespaces in XML”, W3C Recommendation 14 January 1999, Tim Bray, Dave
Hollander, Andrew Layman, http://www.w3.org/TR/REC-xml-names/.

[xhtml]
“XHTML™ 1.0 The Extensible HyperText Markup Language (Second Edition)”,
W3C Recommendation 26 January 2000, revised 1 August 2002, ht-
tp://www.w3.org/TR/2002/REC-xhtml1-20020801.

[xlink]
“XML Linking Language (XLink) Version 1.0”, W3C Recommendation 27 June
2001, Steve DeRose, Eve Maler, David Orchard, http://www.w3.org/TR/2001/
REC-xlink-20010627.

[xsl-fo]
“Extensible Stylesheet Language (XSL), Version 1.0”, W3C Recommendation
15 October 2001, Sharon Adler, Anders Berglund, Jeff Caruso, Stephen Deach,
Tony Graham, Paul Grosso, Eduardo Gutentag, Alex Milowski, Scott Parnell,
Jeremy Richman, Steve Zilles, http://www.w3.org/TR/2001/REC-xsl-20011015/.

75

http://www.w3.org/TR/1998/REC-CSS2-19980512
http://www.w3.org/TR/1998/REC-CSS2-19980512
http://www.w3.org/TR/2003/WD-css3-content-20030514
http://www.w3.org/TR/2002/WD-css3-lists-20021107
http://www.w3.org/TR/2004/CR-css3-page-20040225
http://www.w3.org/TR/2004/CR-css3-page-20040225
http://www.w3.org/TR/2001/CR-css3-selectors-20011113
http://www.w3.org/TR/2001/CR-css3-selectors-20011113
http://www.deltaxml.com/library/how-deltaxml-represents-changes.html
http://www.deltaxml.com/library/how-deltaxml-represents-changes.html
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/2002/REC-xhtml1-20020801
http://www.w3.org/TR/2002/REC-xhtml1-20020801
http://www.w3.org/TR/2001/REC-xlink-20010627
http://www.w3.org/TR/2001/REC-xlink-20010627
http://www.w3.org/TR/2001/REC-xsl-20011015/

[xsl-fo11]
“Extensible Stylesheet Language (XSL), Version 1.1”, W3C Working Draft 16
December 2004, Anders Berglund, http://www.w3.org/TR/2004/WD-xsl11-
20041216/.

76

References

http://www.w3.org/TR/2004/WD-xsl11-20041216/
http://www.w3.org/TR/2004/WD-xsl11-20041216/

